
3. daisy:274 (Seacord, Robert C.)

4. daisy:268 (Plakosh, Daniel)

5. http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1

6. http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1

7. daisy:278 (Compiler Checks)

8. daisy:311 (Runtime Analysis Tools)

9. daisy:302 (Heap Integrity Detection)

Coding Practices
Robert C. Seacord, Software Engineering Institute [vita3]
Daniel Plakosh, Software Engineering Institute [vita4]

Copyright © 2006 Carnegie Mellon University

2006-01-04

Most software vulnerabilities are the result of small but reoccurring programming errors that could be
easily avoided if programmers learned to recognize them and understand their potential harm. In
particular, the C and C++ programming languages have proved highly susceptible to these classes of
errors. This knowledge area of the Build Security In web site describes coding practices that can be used
to mitigate against these common problems in C and C++.

Most of the documents in this knowledge area are excerpted from the CERT book Secure Coding in C
and C++5 [1], written by Robert C. Seacord with contributions from other members of the CERT
Coordination Center. The mitigation strategies included in this knowledge area deal primarily with
vulnerabilities resulting from programming errors in string manipulation, integer operations, and
dynamic memory management. For a more complete description of common programming errors and
the resulting vulnerabilities, please see Secure Coding in C and C++6.

Secure coding requires an understanding of common programming errors that lead to software
vulnerabilities and the knowledge and use of alternative approaches that are less error prone. Secure
coding can also benefit from the proper use of software development tools, including compilers.
Compilers typically have options that allow increased or specific diagnostics to be performed on code
during compilation. Resolving these warnings (by correcting the problem or determining that the
warning is superfluous) can improve the security of your deployed software system. Compilers can also
provide options that influence runtime settings, such as the /GS flag in Microsoft Visual Studio.
Understanding available compiler options and making informed decisions about which options to use
and which to omit can help eliminate vulnerabilities and mitigate against runtime exploitation of
undiscovered or unresolved vulnerabilities. An example of the use of compiler checks to mitigate against
integer vulnerabilities is described in Compiler Checks7. Examples of using other static and dynamic
analysis tools to discover and mitigate vulnerabilities are described in Runtime Analysis Tools8 and
Heap Integrity Detection9.

Mitigation strategies are described, including security, performance, availability, ease of use, and other
known quality attributes. We do not attempt to describe the conditions under which one mitigation
strategy is preferred to another. Instead, we assume that you (the customer of the information) know
what your requirements and constraints are and can make an appropriate selection based on your
analysis of this information and the information contained in the referenced resources.

String Manipulation

Coding Practices 1
ID: 305 | Versie: 7 | Datum: 23/05/06 16:21:21

daisy:274
daisy:268
http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1
http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1
http://www.awprofessional.com/bookstore/product.asp?isbn=0321335724&rl=1
daisy:278
daisy:311
daisy:302

11. daisy:295 (C++ std::string)

12. daisy:300 (fgets() and gets_s())

13. daisy:303 (memcpy_s() and memmove_s())

14. daisy:310 (Runtime Protection)

15. daisy:271 (SafeStr)

16. daisy:314 (strcpy_s() and strcat_s())

17. daisy:313 (strcpy() and strcat())

18. daisy:315 (OpenBSD's strlcpy() and strlcat())

19. daisy:317 (strncpy_s() and strncat_s())

20. daisy:316 (strncpy() and strncat())

21. daisy:272 (Strsafe.h)

22. daisy:273 (Vstr)

24. daisy:319

25. daisy:301 (Guard Pages)

26. daisy:302 (Heap Integrity Detection)

27. daisy:304 (Null Pointers)

28. daisy:269 (OpenBSD)

29. daisy:306 (Phkmalloc)

30. daisy:307 (Randomization)

31. daisy:311 (Runtime Analysis Tools)

32. daisy:276 (Windows XP SP2)

34. daisy:277 (Arbitrary Precision Arithmetic)

35. daisy:278 (Compiler Checks)

36. daisy:308 (Range Checking)

37. daisy:312 (Safe Integer Operations)

38. daisy:318 (Strong Typing)

• C++ std::string11

• fgets() and gets_s()12

• memcpy_s() and memmove_s()13

• Runtime Protection14

• SafeStr15

• strcpy_s() and strcat_s()16

• strcpy() and strcat()17

• strlpy() and strlcat()18

• strncpy_s() and strncat_s()19

• strncpy() and strncat()20

• Strsafe.h21

• Vstr22

Dynamic Memory Management
• Consistent Memory Management24

• Guard Pages25

• Heap Integrity Detection26

• Null Pointers27

• OpenBSD28

• Phkmalloc29

• Randomization30

• Runtime Analysis Tools31

• Windows XP SP232

Integers
• Arbitrary Precision Arithmetic34

• Compiler Checks35

• Range Checking36

• Safe Integer Operations37

• Strong Typing38

Acknowledgments

Documents in this section were authored by Robert C. Seacord and Daniel Plakosh. Documents were

Coding Practices 2
ID: 305 | Versie: 7 | Datum: 23/05/06 16:21:21

daisy:295
daisy:300
daisy:303
daisy:310
daisy:271
daisy:314
daisy:313
daisy:315
daisy:317
daisy:316
daisy:272
daisy:273
daisy:319
daisy:301
daisy:302
daisy:304
daisy:269
daisy:306
daisy:307
daisy:311
daisy:276
daisy:277
daisy:278
daisy:308
daisy:312
daisy:318

reviewed by Shawn Hernan, Michael Howard, and Steve Lipner of Microsoft, Jeffrey Voas of SAIC,
and Gary McGraw of Cigital. Editing was performed by Pamela Curtis of the SEI.

References

[1] Seacord, Robert C. Secure Coding in C and C++. Boston, MA: Addison Wesley Professional, 2005
(ISBN 0321335724).

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006
by Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All
rights reserved. It is reprinted with permission and may not be further reproduced or distributed without
the prior written consent of Pearson Education, Inc.

Velden

Naam Waarde

Copyright Holder Pearson Education

Velden

Naam Waarde

is-content-area-overview true

Content Areas Knowledge/Coding Practices

SDLC Relevance Implementation

Workflow State Publishable

Coding Practices 3
ID: 305 | Versie: 7 | Datum: 23/05/06 16:21:21

